
Neutrino - Tungsten interactions at SND@LHC

Fernanda Mella A. Universidad de Concepción

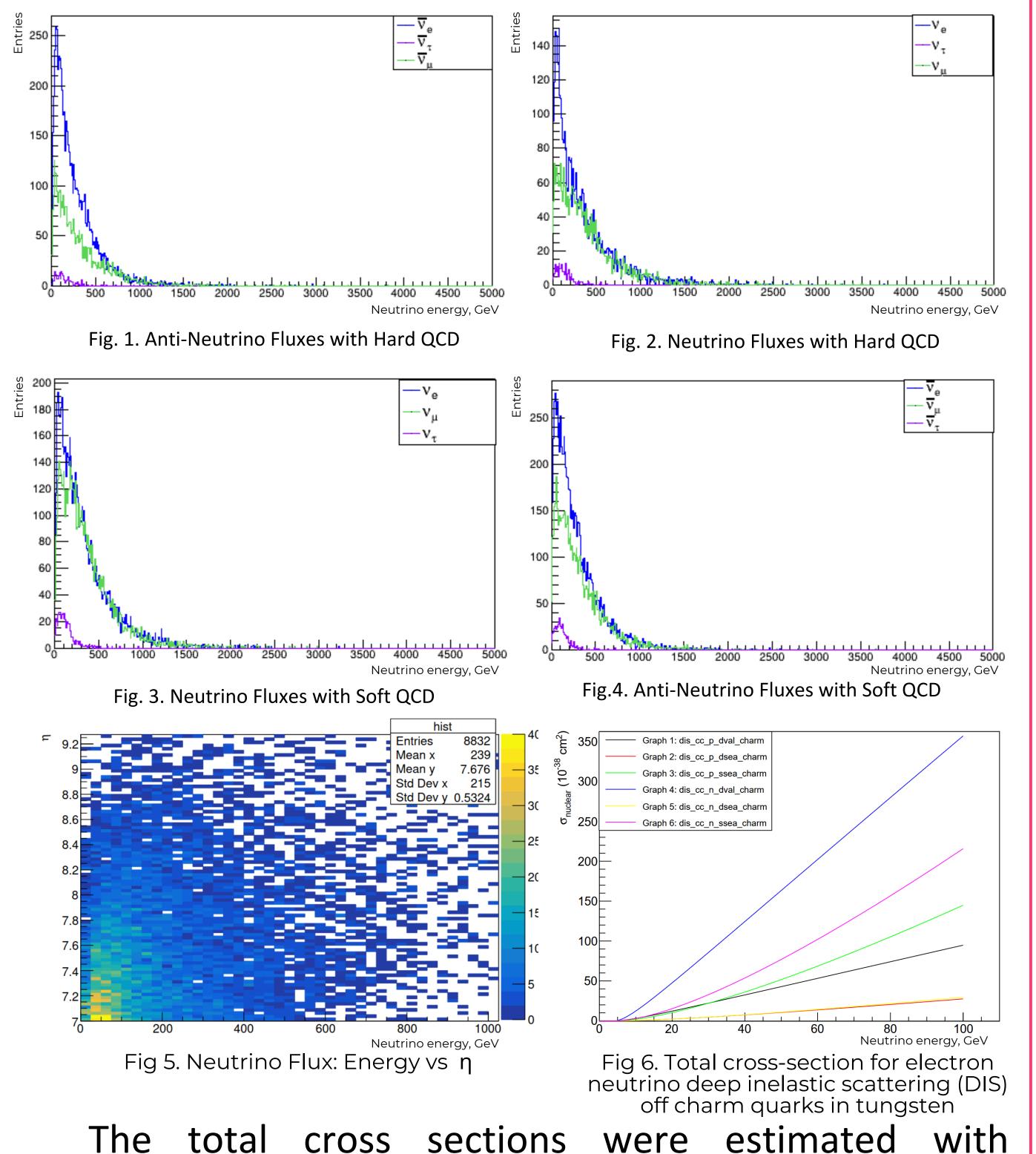
Interships SAPHIR-UNAB 2025 SAPHIR ARM 2025

Universidad de Concepción SAPHI

Abstract

Neutrino production from primary hadrons produced by 13TeV proton-proton collisions was studied with Pythia8.3.13 using the forward tune [2]. Hard and soft QCD physics scenarios were considered. After this production, the different interaction channels in the tungsten target were studied using Genie, for neutrino energy up to 1TeV and a target made of tungsten (W^{184}) The cross-section includes Quasi-elastic Scattering (QEL), Resonance Interactions (RES), Deep Inelastic Scattering (DIS), Coherent Pion Production (COH) and Meson Exchange Current (MEC) interactions.

The following tables present the predicted number of events for 10⁸ p+p collisions, based on a selection of Genie's interaction models. Generalized Resonance processes, Pion-Hadronic Resonance interactions, the Interference model for DIS, are excluded. The errors in the prediction, derived from the variation in neutrino fluxes described in [2].


Table 1 and 2, ν_{τ} interactions for Hard and Soft QCD respectively.

	Interacción	Nro. Eventos	Porcentaje	Interacción	Nro. Eventos	Porcentaje
		$5,88^{+0,42}_{-0,15} \times 10^{-3}$	0.106 %	QEL	$1,35^{+0,05}_{-0,04} \times 10^{-2}$	0.118 %
		$2,21^{+0,26}_{-0,06} \times 10^{-3}$	0.0400 %	MEC	$5,09^{+0,16}_{-0,16} \times 10^{-3}$	0.0448 %
		$5,09^{+0,32}_{-0,04} \times 10^{-4}$	0.00922 %	СОН	$1,10^{+0,04}_{-0,04} \times 10^{-3}$	0.00969 %
	RES	$2,88^{+0,21}_{-0,06} \times 10^{-2}$	0.522 %	RES	$6,60^{+0,22}_{-0,23} \times 10^{-2}$	0.581 %
	DIS	$3,28^{+0,05}_{-0,03} \times 10^{0}$	59.4 %	DIS	$6,60^{+0,22}_{-0,21} \times 10^{0}$	58.1 %
-	Total	5.52	-	Total	11.36	-

Neutrino flux

Pythia8 neutrino flux predictions, using a forwardtuned configuration, are presented for the pseudorapidity region covered by SND@LHC, considering both hard and soft QCD processes

Table 3 and 4, ν_e interactions for Hard and Soft QCD respectively.

Interacciór	Nro. Eventos	Porcentaje	Interacción	Nro. Eventos	Porcentaje
QEL	$1,16^{+0,01}_{-0,04} \times 10^{-1}$	0.0519 %	QEL	$1,96^{+0,01}_{-0,13} \times 10^{-1}$	0.0492 %
MEC	$4,33^{+0,07}_{-0,14} \times 10^{-2}$	0.0194 %	MEC	$7,33^{+0,04}_{-0,46} \times 10^{-2}$	0.0184 %
СОН	$2,33^{+0,04}_{-0,08} \times 10^{-2}$	0.0104 %	СОН	$4,08^{+0,03}_{-0,31} \times 10^{-2}$	0.0102 %
RES	$5,90^{+0,06}_{-0,20} \times 10^{-1}$	0.264 %	RES	$1,00^{+0,01}_{-0,64} \times 10^{0}$	0.251 %
DIS	$1,33^{+0,04}_{-0,08} \times 10^2$	59.6 %	DIS	$2,37^{+0,03}_{-0,24} \times 10^2$	59.5 %
Total	223.24	-	Total	398.27	-

Table 5 and 6, ν_{μ} interactions for Hard and Soft QCD respectively.

Interacc			Porcentaje	Interacción	Nro. Eventos	Porcentaje
QEL	$8,63^{+0,27}_{-0,20}$	$\times 10^{-2}$	0.0448 %	QEL	$1,75^{+0,01}_{-0,11} \times 10^{-1}$	0.0458 %
MEC	$3,23^{+0,10}_{-0.07}$	$\times 10^{-2}$	0.0168 %	MEC	$6,57^{+0,03}_{-0,43} \times 10^{-2}$	0.0172 %
СОН	$1,83^{+0,08}_{-0,04}$	$\times 10^{-2}$	0.00950 %	СОН	$3,74_{-0,30}^{+0,01} \times 10^{-2}$	0.00979 %
RES		$\times 10^{-1}$	0.229 %	RES	$8,98^{+0,04}_{-0,60} \times 10^{-1}$	0.235 %
DIS	$1,15^{+0,05}_{-0,04}$	$\times 10^2$	59.7 %	DIS	$2,28^{+0,01}_{-0,24} \times 10^2$	59.7 %
Total	192.	70	-	Total	382.23	-

Discussion

In the Pythia8 fluxes for the ν_{τ} we can see that the amount of events that we can see in the flux are not many, this later reflects at the number of events on Table 1.

On the other hand for u_e and u_μ we can pass onto directly the tables. Where we can see how DIS interactions have the most amount of events for each neutrino. Rounding up the 60% of the expected events.

This aligns with the filtering applied to the fluxes, where only neutrinos with a primary particle as their mother were considered. This is because the interactions we expect to study are predominantly of this type. Specifically, to analyze interactions leading to the production of charm quarks C, we should focus on DIS

As DIS are the most predominant process present in this work. For future reference, to have a better study

GENIE_3.06, fig. 6 shows some DIS cases. The expected no. of $\nu + W$ interactions is estimated as:

 $N_{\nu+W} = N_{W_{nuclei}} \times N_{\nu} [1/cm^2] \times \sigma_{Total} [cm^2]$

Acknowledgements

The author thank Yury Ivanov for his help with cluster optimization and software integration. Our thanks to the UNAB team for their support with administration. Finally thanks to our mentor, Marco Ayala, for his guidance. This work was supported by ANID Millennium Program ICN2019 044.

on these types of interactions at SND it would be good to consider a larger range of energy for the crosssplines, up to 5 TeV rather than 1 TeV.

References

[1] Rivière, C., Redford, S., Oide, K., Apsimon, R., Bruning, O., Holzer, E., & Zimmermann, F. (2023). Study of neutrino interactions at SND@LHC. https://cds.cern.ch/record/2876147.

[2] Fieg, M., Kling, F., Schulz, H., & Sjöstrand, T. (2023). Tuning Pythia for Forward Physics Experiments. <u>https://arxiv.org/abs/2309.08604</u>.