

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Long Lived Heavy Neutral Leptons through Z' decays at the FCC-ee

Mariel Poduje^{1,2*}, Giovanna Cottin^{1,2}, Francisca Garay^{1,2}

¹Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 782046, Chile. ²Saphir Millenium Institute for Subatomic Physics at High-Energy Frontier *mupoduje@uc.cl

Abstract

We study the phenomenology of a $U(1)_{B-L}$ extension of the SM predicting long-lived heavy neutral leptons (HNLs), which are pair produced from a new gauge boson Z' with displaced vertex signatures at the electron positron mode of the Future Circular Collider (FCC-ee). Progress on sensitivity prospects are provided on the 1-100GeV mass scale for g'~ 10^{-4} , and $|V_{lN}|^2 = 10^{-8} - 10^{-20}$, a region that has not been constrained by LHC [7][8].

Long lived HNLs at the FCC-ee

The B-L model

MILLENNIUM INSTITUT

SAPHIR

FOR SUBATOMIC PHYSICS

AT HIGH-ENERGY FRONTIER

The B-L model consists of the Standard Model with one extra U(1) gauge

symmetry, $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$.

Tables 1 and 0.	particle	type	parameter	description
Tables T and Z:	N	fermion	g'	B-L gauge coupling
Particle content of the	1		$M_{Z'}$	Z' boson mass
B-L extension and our	χ	scalar	M_N	HNL mass
scanned parameters.	Z'	vector boson	$ V_{lN} ^2$	heavy light neutrino mixing

HNL sensitivity prospects at FCC-ee

IDEA detector

Using MadGraph 3.5.4 [1] and MadSpin[2] we simulated the B-L process of a Z' producing two HNLs and their posterior decay to a muon and two jets through an off-shell W boson.

The decay width of the HNL is given by $\Gamma \approx M_N^5 G_F^2 |V_{lN}|^2$

At the GeV scale, for an (allowed) small enough heavy-light neutrino mixing, $|V_{\mu N}|^2$, the HNLs behave as LLPs due to the supressed width.

We want to use fastsimulation softwares for the reconstruction of displaced tracks at the Vertex Finder [3].

The particle's proper length is given by Сħ $\overline{M_N^5 G_F^2} |V_{lN}|^2$ The decay length is given by $\lambda = \beta \gamma c \tau$ and it is used for the calculation of the probability for the HNL to decay whithin the fiducial volumen as

number of expected events.

Trying coupled B-L masses

Using the condition $M_N = 0.3M_{Z'}$ to couple B-L masses, we note that there is resonance produced at $\sqrt{s} = M_{Z'}$.

 $M_N(GeV)$

$$P(\theta_i) = e^{-L_1(\theta_i)/\lambda_i} (1 - e^{-L_2(\theta_i)/\lambda_i})$$

 L_1 : Distance from the IP to the begining of the inner detector wall. L_2 : Distance traveled inside the detector,

Figure 4: Cross-section as a function of the HNL mass for $\sqrt{s} = M_{ZI} = 91 GeV$

Conclusions

- We studied an unconstrained parameter space that is accesible to FCC-ee operating at an energy scale where its luminosity is máximum, and we can generate SM neutrino masses through Majorana HNLs that behave as LLPs and can produce a DV inside the Vertex Finder. • HNLs can decay inside the IDEA+LAYCAST configuration for $|V_{\mu N}|^2$ as low as 10^{-13} .
- As expected, the far detector shifted the constraint in the sensitivity plot toward lower mixings or longer lifetimes.

This work received finantial support from ANID Fondecyt grant number 11220237 and 1240721. ANID-Subdirección de Capital Humano/Magíster Nacional/2024 - 22241306

References:

[1]Alwall et al., JHEP 07 (2014) 079. [2]Artoisenet et al., JHEP 03 (2013) 015. [3] A. Abada et al, Eur. Phys. J. ST, vol. 228, no. 2,pp. 261–623, 2019. [4] Y.Lu, et al., 2024. arXiv: 2406.05770 [hep-ph] [5]A. Abada et al. Eur. Phys. J. ST, 228(2):261–623, 2019. [6]Lu et al., arXiv:2406.05770 (2024). [7]Chiang et al., JHEP 12 (2019). [8]Butterworth, J., J. Phys. Conf. Ser. 1271 (2019) 012013